SCRUTINIZER: Detecting Code Reuse in Malware via Decompilation and Machine Learning

Omid Mirzaei, Roman Vasilenko, Engin Kirda, Long Lu, Amin Kharraz

18th Conference Detection of Intrusions and Malware & Vulnerability Assessment DIMVA 2021

APT Groups Target Firms Working on COVID-19 Vaccines

Microsoft Says Attacks on Seven Companies Blocked

Nuclear Weapons Agency Hacked in Widening Cyberattack

Google: North Korean hackers have targeted security researchers via social media

Google TAG warns security researchers to be on the lookout when approached by unknown individuals on social media.

- Previous efforts to detect code reuse:
 - Binary and code similarity testing
 - Clone detection
 - (Fuzzy) hashing
- Existing approaches are inadequate for these reasons:
 - Lack of ground truth
 - Intense use of evasive techniques

Outline

- Scrutinizer Overview
- Results
- Discussion
- Conclusion

Outline

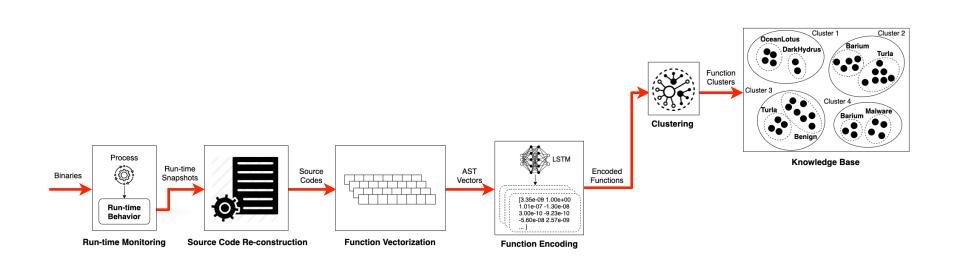
- Scrutinizer Overview
- Results
- Discussion
- Conclusion

Main Idea

- Identifying code similarities that exist between an unknown sample and those that are known to be used by threat actors from different campaigns
- Modeling phase
 - Aim: creating a large knowledge base of previously observed and tagged malware campaigns

Scrutinizer Overview

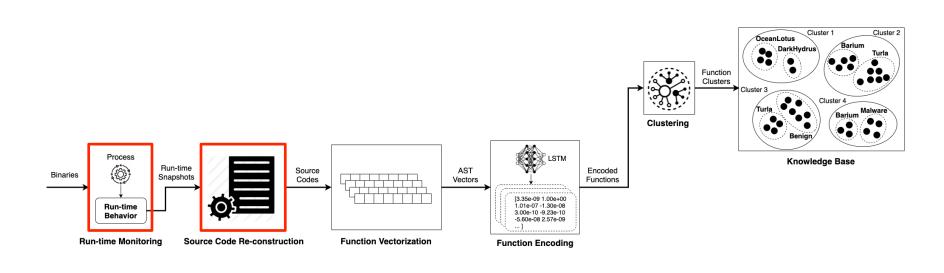
General Architecture



Modeling Process Flow \longrightarrow

Scrutinizer Overview

General Architecture

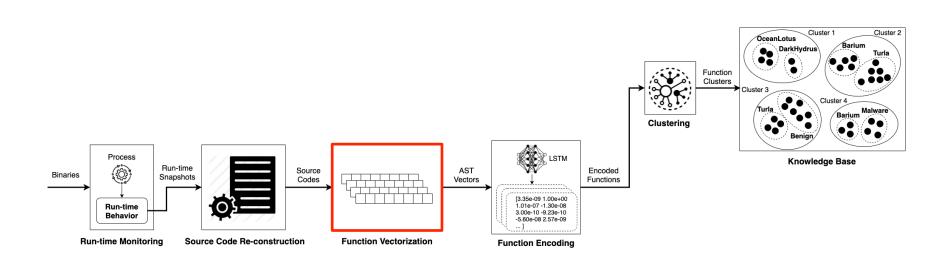


Run-time Monitoring

- Input:
 - Malware and benign binaries
- Output:
 - Decompiled code
- Steps:
 - Running samples in a dynamic analysis engine
 - Taking snapshots at different stages of the dynamic analysis
 - Re-constructing source code from binaries by integrating decompiled codes of snapshots

Scrutinizer Overview

General Architecture



Modeling Process Flow \longrightarrow	
---	--

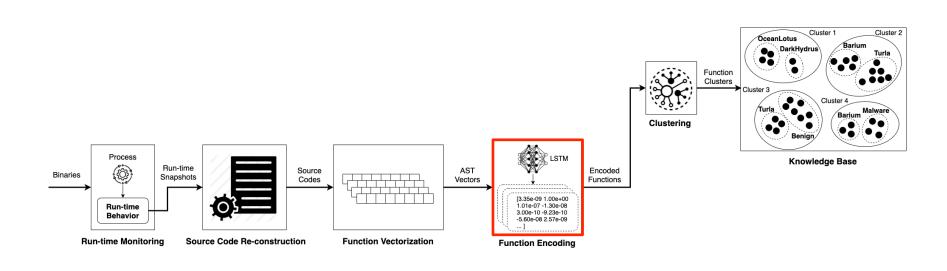
Function Vectorization

- Input:
 - Decompiled code
- Output:
 - Abstract Syntax Tree (AST) vector

```
void FUN 1001eab0 (void)
                                                 V_F = \langle FUNCTION_DECL, DECL_STMT, VAR_DECL,
if (pcVar1 == (char *)0x0) {
                                                         DECL_STMT, ..., IF_STMT, BINARY_OPERATOR,
  pcVar1 = \&DAT 10055b20;
}
                                                            CALL_EXPR DECL_REF_EXPR, ..., IF_STMT,
else {
  pcVar1 = pcVar1 + 1;
                                                         COMPOUND STMT CALL EXPR ..., RETURN SMT >
}
wsprintfA(&local 11c, &DAT 10042bf4, pcVar1);
. . .
LVar3 = RegCreateKeyExA(...);
if (LVar3 == 0) {
  RegSetValueExA(...);
  RegCloseKey(local 18);
 . .
}
. . .
return:
```

Scrutinizer Overview

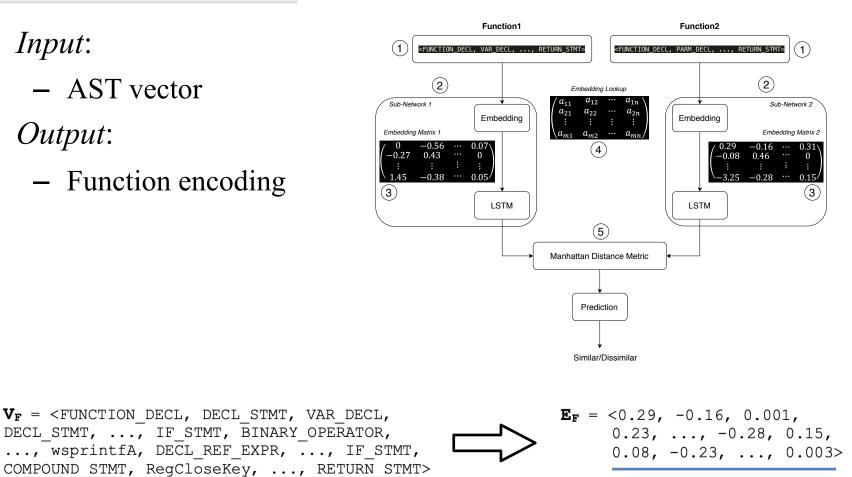
General Architecture



Modeling Process Flow \longrightarrow

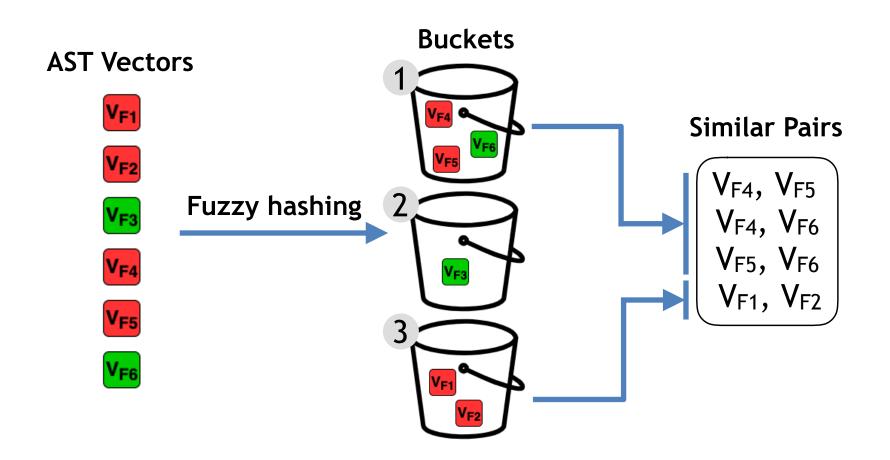
Function Encoding

- Input:
 - AST vector
- Output:
 - Function encoding

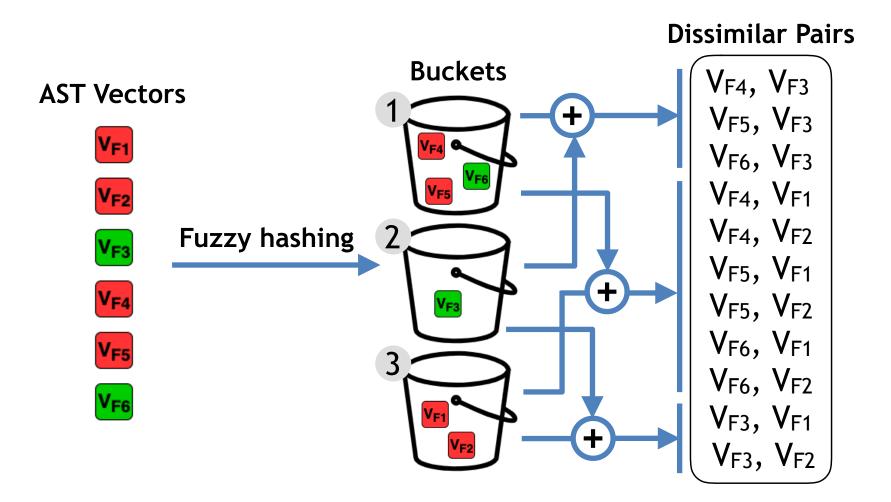


Length = 128

Function Encoding

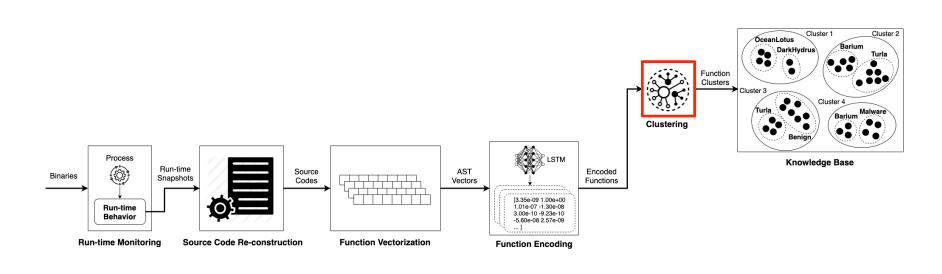


Function Encoding



Scrutinizer Overview

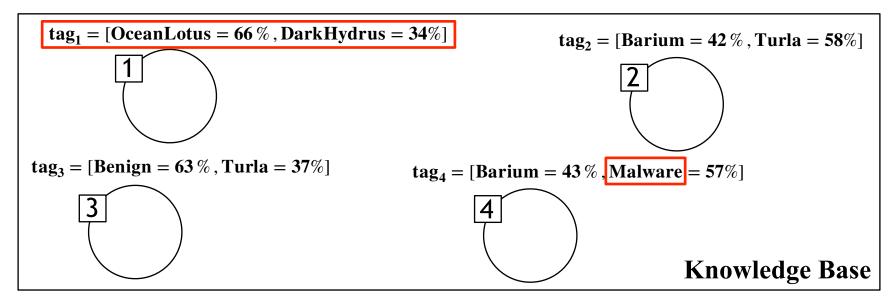
General Architecture



Modeling Process Flow \longrightarrow	
---	--

Encoding Clustering

- Input:
 - Function encodings
- Output:
 - Clusters of similar function encodings (knowledge base)

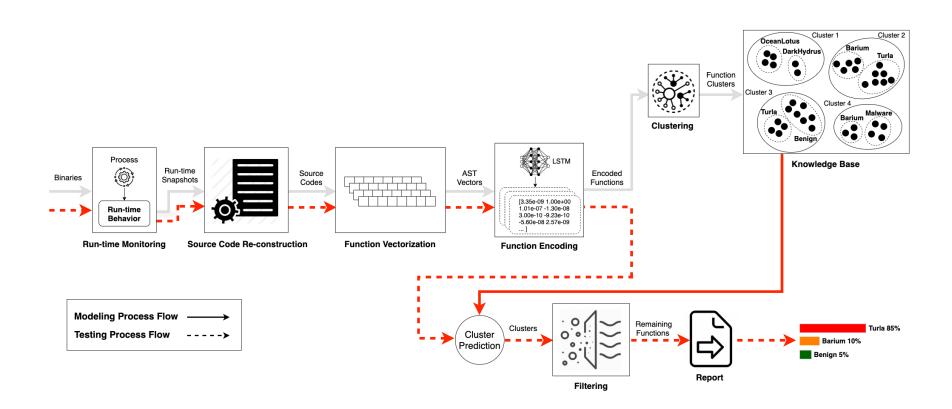


Main Idea

- Identifying code similarities that exist between an unknown sample and those that are known to be used by threat actors from different campaigns
- Modeling phase
 - Aim: creating a large knowledge base of previously observed and tagged malware campaigns
- Testing phase
 - Aims:
 - Filtering noisy functions
 - Detecting code reuse

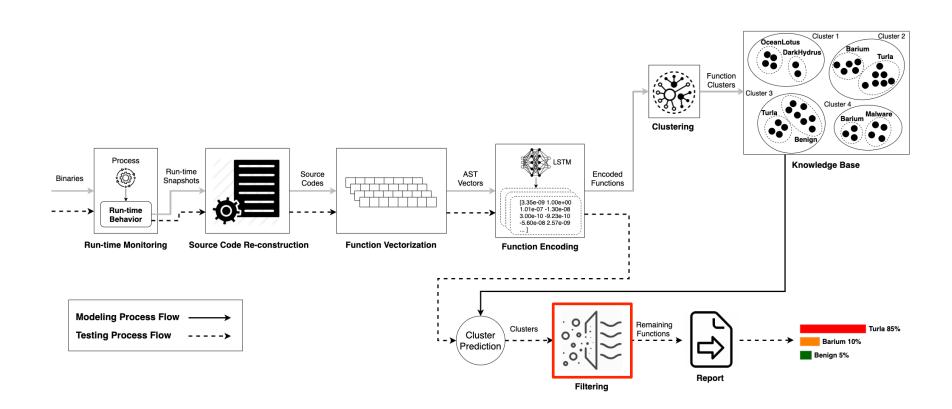
Scrutinizer Overview

General Architecture



Scrutinizer Overview

General Architecture



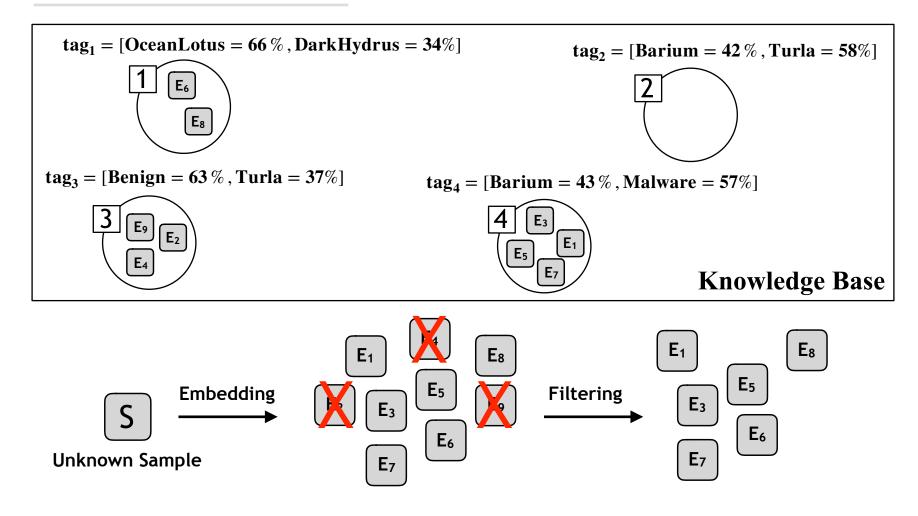
Filtering Noisy Functions

- Input:
 - Function encodings
- Output:
 - All functions in an unknown sample that are not identified as noisy
 - In other words, functions that are mainly observed in malware
- What are noisy functions and why should they be discarded?
 - Functions that are frequent in both malware and benign samples
 - Malware and benign samples share significant volumes of standard code
 - Shared functions can impact the performance of ML-based systems
 - Analyzing less functions saves resources

Filtering Noisy Functions

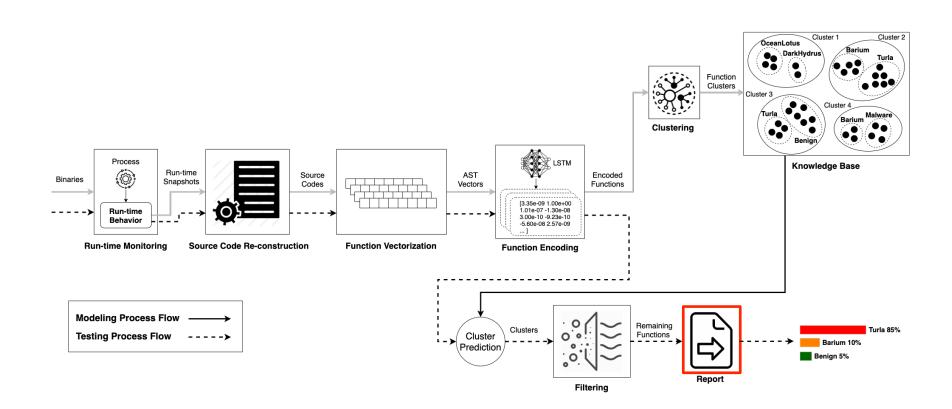
- How noisy functions in an unknown sample are filtered?
 - All functions are encoded initially
 - All functions are assigned to previously known clusters
 - For each function:
 - We first inspect the tag of the cluster to which the function has been assigned
 - If the majority (δ) of functions in the cluster are benign:
 - The function is discarded
 - Otherwise:
 - It is saved for code reuse detection

Filtering Noisy Functions

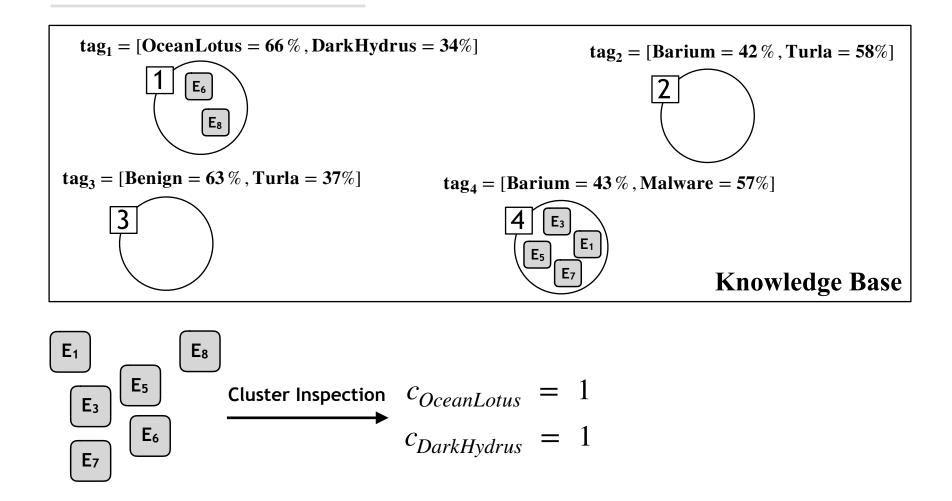


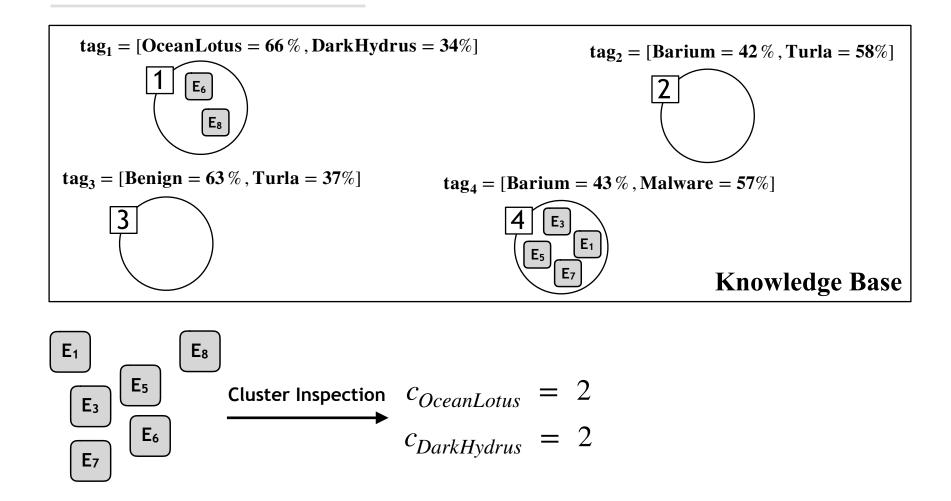
Scrutinizer Overview

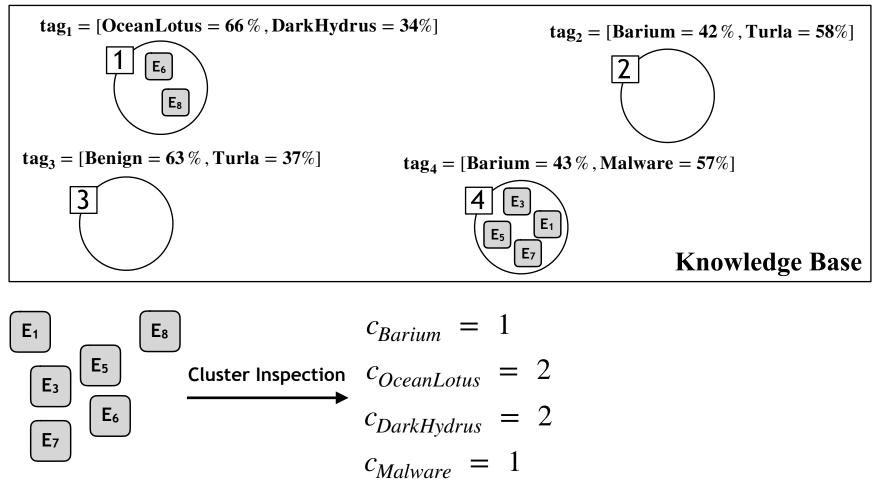
General Architecture

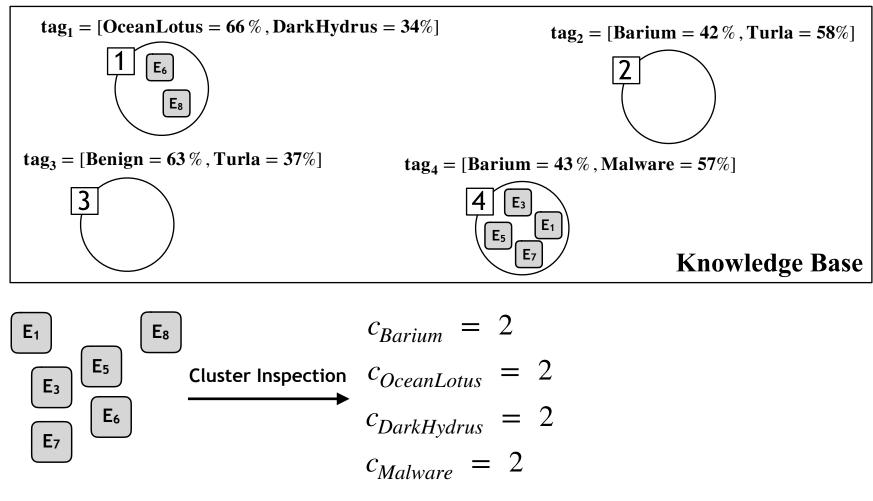


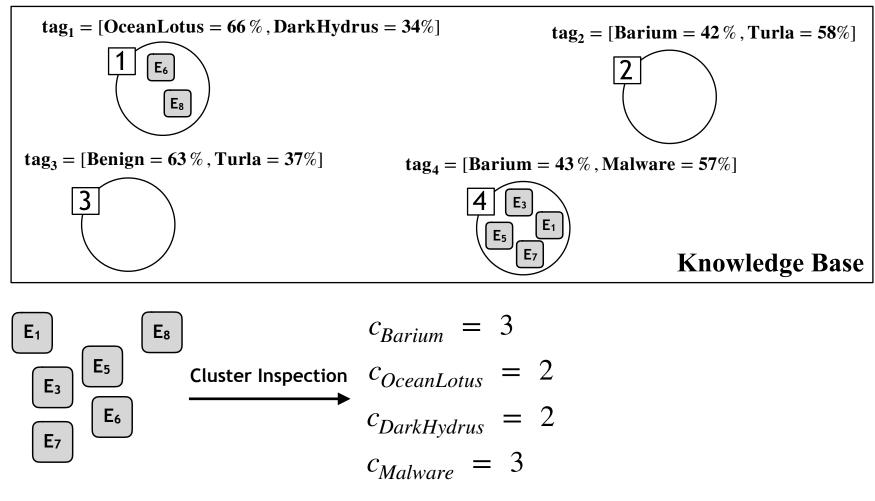
- Input:
 - Remaining functions from filtering step
- Output:
 - A report which shows how much overlap exists between an unknown sample and those which are known to be used by specific campaigns
- How this overlap is detected?
 - Function encodings are assigned to previously created clusters
 - Clusters are inspected automatically to find commonalities

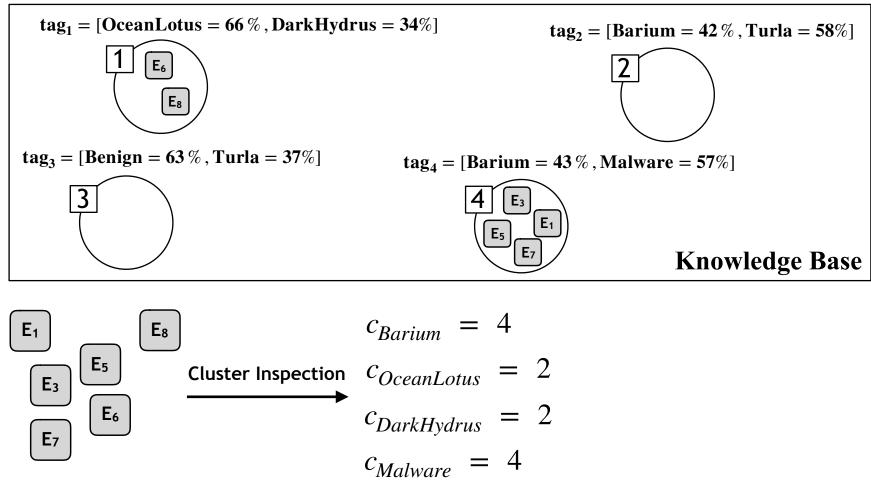


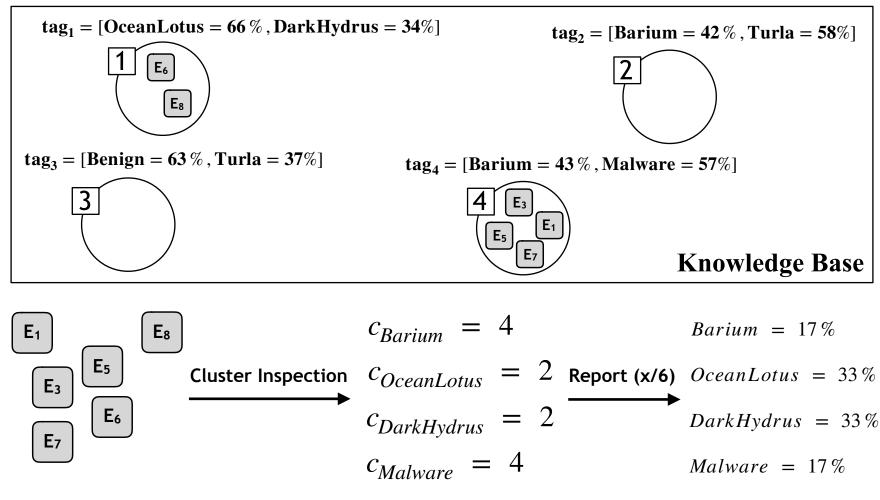












Outline

- Scrutinizer Overview
- Results
- Discussion
- Conclusion

Results Datasets

Phase	Data Type	#Samples	Size	Avg_LOC	Complexity
Modeling	Malware [18]	12,540	0.55	106.21	11.05
	Benign [9]	31,475	0.31	35.73	5.80
	Total	44,015			
Testing	Malware [18]	500	0.38	95.47	10.21
	Benign [18]	2,500	0.29	33.25	5.76
	Total	3,000			

Results Function Encoding

- Automatic Verification
 - Cross-validation

Туре	Mean	Standard Deviation	Median
Malware	0.082	0.097	0.031
Benign	0.056	0.061	0.004
Both	0.058	0.071	0.017

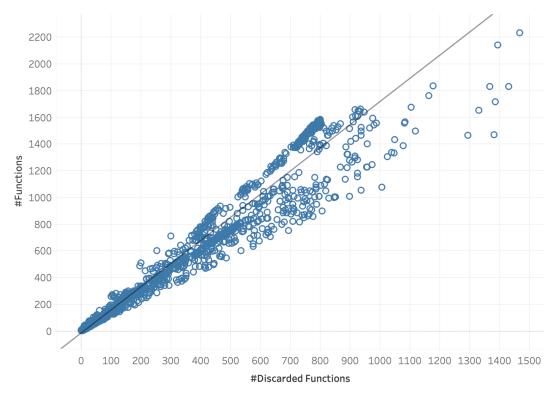
- Manual Verification
 - 1000 samples

Results Cluster Analysis

- We leveraged HDBSCAN algorithm to group function embeddings into different clusters
- We reduced the dimension of function embedding from 128 to 8 using PCA to speed up the clustering process
- We could find 1+ million clusters with similar function encodings
 - 91% of clusters were completely benign
 - 3.2% of clusters were completely malicious
 - 5.88% of clusters were mixed
- The average size of clusters was around 5
- The largest cluster had 14K+ function embeddings

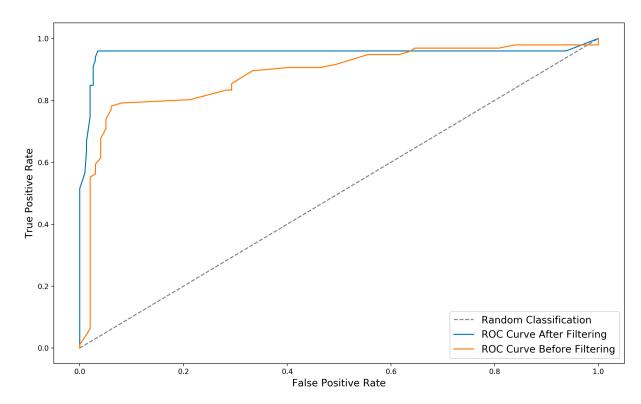
Results Real-World Deployment - Filtering

• The filtering mechanism works well in practice by filtering a median of 126 functions (\approx 56% of code).



Results Real-World Deployment - Filtering

• The applied filtering mechanism improves the TPR of a classification system by 10% and decreases the FPR by 8.8%



Scrutinizer. Omid Mirzaei

Results

Real-World Deployment - Code Reuse Analysis on APT Campaigns

- Intra-campaign code reuse analysis
- Inter-campaign code reuse analysis

Campaign analysis result for a subset of samples that we could manually verify using online threat reports and AV scanners.

MD5	#Functions	Discarded Functions (%)	Assigned Campaign: similarity (%)	Real Campaign
22d01fa2725ad7a83948f399144563f9	763	81.9	Turla: 58.0	Turla [26]
0d67422ba42d4a548e807b0298e372c7	225	55.1	GazaCybergang: 73.9	GazaCybergang [3]
655f56f880655198962ca8dd746431e8	188	66.5	GazaCybergang: 64.0	GazaCybergang [3]
ff8d92dfbcda572ef97c142017eec658	144	70.1	Barium: 38.5	Barium [26][8]
c11dd805de683822bf4922aecb9bfef5	220	65.9	Barium: 38.4	Barium [26][8]
aae531a922d9cca9ddca3d98be09f9df	558	61.6	OilRig: 43.7	OilRig [26][8]
6a7bff614a1c2fd2901a5bd1d878be59	588	59.0	OilRig: 40.6	OilRig [26][8]
a921aa35deedf09fabee767824fd8f7e	44	68.2	GazaCybergang: 41.5	GazaCybergang [26][8]
0e441602449856e57d1105496023f458	73	61.6	Turla: 35.3	Turla [26]
7f05d410dc0d1b0e7a3fcc6cdda7a2ff	220	65.9	Barium: 38.4	Barium [26][8]
557ff68798c71652db8a85596a4bab72	144	70.1	Barium: 38.5	Barium [26][8]
b0877494d36fab1f9f4219c3defbfb19	144	70.1	Barium: 38.5	Barium [26][8]

Outline

- Scrutinizer Overview
- Results
- Discussion
- Conclusion

Discussion

- Accuracy
 - Function encoding relies on training data
 - Collecting data is a non-trivial task
 - Decompilation is an error-prone process
 - Features extraction tools cannot handle decompiled codes well due to artifacts
- Analysis costs and potential bottlenecks
 - Dynamic analysis
 - Training and clustering processes

Outline

- Scrutinizer Overview
- Results
- Discussion
- Conclusion

Conclusion

- Targeted attacks are growing in number
- Lack of automated tools to inspect code reuse in malware samples that are used in targeted attacks
- We have proposed an automated tool to fill this gap with the following features:
 - An ML-based function encoding mechanism
 - A filtering mechanism to discard functions that are prevalent in both malware and benign samples and to save analysis time
 - An automatic code reuse detection and campaign assignment tool