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Motivation

• Previous efforts to detect code reuse: 
– Binary and code similarity testing 
– Clone detection 
– (Fuzzy) hashing 

• Existing approaches are inadequate for these reasons: 
– Lack of ground truth  
– Intense use of evasive techniques
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Main Idea

• Identifying code similarities that exist between an unknown sample and 
those that are known to be used by threat actors from different 
campaigns 

• Modeling phase 
– Aim: creating a large knowledge base of previously observed and 

tagged malware campaigns
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Run-time Monitoring

• Input:  
– Malware and benign binaries 

• Output:  
– Decompiled code 

• Steps: 
– Running samples in a dynamic analysis engine 
– Taking snapshots at different stages of the dynamic analysis 
– Re-constructing source code from binaries by integrating 

decompiled codes of snapshots
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• Input:  
– Decompiled code 

• Output:  
– Abstract Syntax Tree (AST) vector

Function Vectorization
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Scrutinizer Overview 
General Architecture
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Function Encoding

• Input:  
– AST vector 

• Output:  
– Function encoding
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Function Encoding
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• Input:  
– Function encodings 

• Output:  
– Clusters of similar function encodings (knowledge base)
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Main Idea

• Identifying code similarities that exist between an unknown 
sample and those that are known to be used by threat actors 
from different campaigns 

• Modeling phase 
– Aim: creating a large knowledge base of previously observed and 

tagged malware campaigns  
• Testing phase 

– Aims: 
• Filtering noisy functions 
• Detecting code reuse
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General Architecture
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Filtering Noisy Functions

• Input:  
– Function encodings 

• Output:  
– All functions in an unknown sample that are not identified as noisy 
– In other words, functions that are mainly observed in malware 

• What are noisy functions and why should they be discarded? 
– Functions that are frequent in both malware and benign samples 
– Malware and benign samples share significant volumes of standard code 
– Shared functions can impact the performance of ML-based systems 
– Analyzing less functions saves resources
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Filtering Noisy Functions

• How noisy functions in an unknown sample are filtered? 
– All functions are encoded initially 
– All functions are assigned to previously known clusters 
– For each function: 

• We first inspect the tag of the cluster to which the function has been 
assigned 

• If the majority (   ) of functions in the cluster are benign: 
– The function is discarded 

• Otherwise: 
– It is saved for code reuse detection
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Filtering Noisy Functions
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General Architecture
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Detecting Code Reuse

• Input:  
– Remaining functions from filtering step 

• Output:  
– A report which shows how much overlap exists between an 

unknown sample and those which are known to be used by 
specific campaigns 

• How this overlap is detected? 
– Function encodings are assigned to previously created clusters  
– Clusters are inspected automatically to find commonalities
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Detecting Code Reuse
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Results 
Datasets
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Results 
Function Encoding

• Automatic Verification 
– Cross-validation 

• Manual Verification 
– 1000 samples
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Prediction error statistics after 5-fold cross-validation
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Results 
Cluster Analysis

• We leveraged HDBSCAN algorithm to group function 
embeddings into different clusters 

• We reduced the dimension of function embedding from 128 to 8 
using PCA to speed up the clustering process 

• We could find 1+ million clusters with similar function 
encodings 
– 91% of clusters were completely benign 
– 3.2% of clusters were completely malicious 
– 5.88% of clusters were mixed 

• The average size of clusters was around 5 
• The largest cluster had 14K+ function embeddings
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Results 
Real-World Deployment - Filtering

• The filtering mechanism works well in practice by filtering a 
median of 126 functions (   56% of code).
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Results 
Real-World Deployment - Filtering

• The applied filtering mechanism improves the TPR of a 
classification system by 10% and decreases the FPR by 8.8%
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Results 
Real-World Deployment - Code Reuse Analysis on APT Campaigns

• Intra-campaign code reuse analysis 
• Inter-campaign code reuse analysis
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Campaign analysis result for a subset of samples that we could manually verify using online threat reports and AV scanners.
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Discussion

• Accuracy 
– Function encoding relies on training data 
– Collecting data is a non-trivial task 

• Decompilation is an error-prone process 
• Features extraction tools cannot handle decompiled codes well due 

to artifacts  

• Analysis costs and potential bottlenecks 
– Dynamic analysis 
– Training and clustering processes
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Conclusion

• Targeted attacks are growing in number 
• Lack of automated tools to inspect code reuse in malware 

samples that are used in targeted attacks 
• We have proposed an automated tool to fill this gap with the 

following features: 
– An ML-based function encoding mechanism 
– A filtering mechanism to discard functions that are prevalent in 

both malware and benign samples and to save analysis time 
– An automatic code reuse detection and campaign assignment tool
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