
SCRUTINIZER: Detecting Code Reuse
in Malware via Decompilation and

Machine Learning

Omid Mirzaei, Roman Vasilenko, Engin Kirda, Long Lu, Amin Kharraz

18th Conference Detection of Intrusions and Malware & Vulnerability Assessment
DIMVA 2021

Scrutinizer. Omid Mirzaei

Motivation

 2

Scrutinizer. Omid Mirzaei

Motivation

 3

Scrutinizer. Omid Mirzaei

Motivation

 4

Scrutinizer. Omid Mirzaei

Motivation

• Previous efforts to detect code reuse:
– Binary and code similarity testing
– Clone detection
– (Fuzzy) hashing

• Existing approaches are inadequate for these reasons:
– Lack of ground truth
– Intense use of evasive techniques

 5

Scrutinizer. Omid Mirzaei

Outline

• Scrutinizer Overview
• Results
• Discussion
• Conclusion

 6

Scrutinizer. Omid Mirzaei

Outline

• Scrutinizer Overview
• Results
• Discussion
• Conclusion

 7

Scrutinizer. Omid Mirzaei

Main Idea

• Identifying code similarities that exist between an unknown sample and
those that are known to be used by threat actors from different
campaigns

• Modeling phase
– Aim: creating a large knowledge base of previously observed and

tagged malware campaigns

 8

Scrutinizer. Omid Mirzaei

Scrutinizer Overview
General Architecture

 9

Scrutinizer. Omid Mirzaei

Scrutinizer Overview
General Architecture

 10

Scrutinizer. Omid Mirzaei

Run-time Monitoring

• Input:
– Malware and benign binaries

• Output:
– Decompiled code

• Steps:
– Running samples in a dynamic analysis engine
– Taking snapshots at different stages of the dynamic analysis
– Re-constructing source code from binaries by integrating

decompiled codes of snapshots

 11

Scrutinizer. Omid Mirzaei

Scrutinizer Overview
General Architecture

 12

Scrutinizer. Omid Mirzaei

• Input:
– Decompiled code

• Output:
– Abstract Syntax Tree (AST) vector

Function Vectorization

 13

Scrutinizer. Omid Mirzaei

Scrutinizer Overview
General Architecture

 14

Scrutinizer. Omid Mirzaei

Function Encoding

• Input:
– AST vector

• Output:
– Function encoding

 15

cc

<FUNCTION_DECL, VAR_DECL, ..., RETURN_STMT> <FUNCTION_DECL, PARM_DECL, ..., RETURN_STMT>

Embedding Embedding

Function1 Function2

LSTM LSTM

Manhattan Distance Metric

Prediction

Similar/Dissimilar

Embedding Lookup

Embedding Matrix 1 Embedding Matrix 2

Sub-Network 2Sub-Network 1

1

2

4

2

5

3

1

3

Length = 128

Scrutinizer. Omid Mirzaei

Function Encoding

 16

VF4, VF5

 VF4, VF6

 VF5, VF6

 VF1, VF2

Similar Pairs

Fuzzy hashing

AST Vectors
Buckets

1

2

3

Scrutinizer. Omid Mirzaei

Function Encoding

 17

VF4, VF3

 VF5, VF3

 VF6, VF3

 VF4, VF1

 VF4, VF2

 VF5, VF1

 VF5, VF2

 VF6, VF1

 VF6, VF2

 VF3, VF1

 VF3, VF2

Dissimilar Pairs

Fuzzy hashing

AST Vectors +

+

+

Buckets
1

2

3

Scrutinizer. Omid Mirzaei

Scrutinizer Overview
General Architecture

 18

Scrutinizer. Omid Mirzaei

• Input:
– Function encodings

• Output:
– Clusters of similar function encodings (knowledge base)

4

1

3

Knowledge Base

2

tag4 = [Barium = 43 % , Malware = 57%]

tag1 = [OceanLotus = 66 % , DarkHydrus = 34%]

tag3 = [Benign = 63 % , Turla = 37%]

tag2 = [Barium = 42 % , Turla = 58%]

Encoding Clustering

 19

Scrutinizer. Omid Mirzaei

Main Idea

• Identifying code similarities that exist between an unknown
sample and those that are known to be used by threat actors
from different campaigns

• Modeling phase
– Aim: creating a large knowledge base of previously observed and

tagged malware campaigns
• Testing phase

– Aims:
• Filtering noisy functions
• Detecting code reuse

 20

Scrutinizer. Omid Mirzaei

Scrutinizer Overview
General Architecture

 21

Scrutinizer. Omid Mirzaei

Scrutinizer Overview
General Architecture

 22

Scrutinizer. Omid Mirzaei

Filtering Noisy Functions

• Input:
– Function encodings

• Output:
– All functions in an unknown sample that are not identified as noisy
– In other words, functions that are mainly observed in malware

• What are noisy functions and why should they be discarded?
– Functions that are frequent in both malware and benign samples
– Malware and benign samples share significant volumes of standard code
– Shared functions can impact the performance of ML-based systems
– Analyzing less functions saves resources

 23

Scrutinizer. Omid Mirzaei

Filtering Noisy Functions

• How noisy functions in an unknown sample are filtered?
– All functions are encoded initially
– All functions are assigned to previously known clusters
– For each function:

• We first inspect the tag of the cluster to which the function has been
assigned

• If the majority () of functions in the cluster are benign:
– The function is discarded

• Otherwise:
– It is saved for code reuse detection

 24

δ

Scrutinizer. Omid Mirzaei

Filtering Noisy Functions

 25

S
Unknown Sample

E1

E2 E3

E4

E5

E6

E7

E8

E9
Embedding Filtering

E1

E3

E5

E6

E7

E8

X
X

X

4
tag4 = [Barium = 43 % , Malware = 57%]

1
tag1 = [OceanLotus = 66 % , DarkHydrus = 34%]

tag3 = [Benign = 63 % , Turla = 37%]

3

Knowledge Base

E9
E2

E4

E6

E8

2

tag2 = [Barium = 42 % , Turla = 58%]

E3

E5
E1

E7

Scrutinizer. Omid Mirzaei

Scrutinizer Overview
General Architecture

 26

Scrutinizer. Omid Mirzaei

Detecting Code Reuse

• Input:
– Remaining functions from filtering step

• Output:
– A report which shows how much overlap exists between an

unknown sample and those which are known to be used by
specific campaigns

• How this overlap is detected?
– Function encodings are assigned to previously created clusters
– Clusters are inspected automatically to find commonalities

 27

Scrutinizer. Omid Mirzaei

cOceanLotus = 1
cDarkHydrus = 1

Detecting Code Reuse

 28

4
tag4 = [Barium = 43 % , Malware = 57%]

1
tag1 = [OceanLotus = 66 % , DarkHydrus = 34%]

tag3 = [Benign = 63 % , Turla = 37%]

3

Knowledge Base

2

tag2 = [Barium = 42 % , Turla = 58%]

E1

E3

E5

E6

E7

E8

E6

E8

E3

E5
E1

E7

Cluster Inspection

Scrutinizer. Omid Mirzaei

Detecting Code Reuse

 29

4
tag4 = [Barium = 43 % , Malware = 57%]

1
tag1 = [OceanLotus = 66 % , DarkHydrus = 34%]

tag3 = [Benign = 63 % , Turla = 37%]

3

Knowledge Base

2

tag2 = [Barium = 42 % , Turla = 58%]

E1

E3

E5

E6

E7

E8

E6

E8

E3

E5
E1

E7

Cluster Inspection cOceanLotus = 2
cDarkHydrus = 2

Scrutinizer. Omid Mirzaei

Detecting Code Reuse

 30

4
tag4 = [Barium = 43 % , Malware = 57%]

1
tag1 = [OceanLotus = 66 % , DarkHydrus = 34%]

tag3 = [Benign = 63 % , Turla = 37%]

3

Knowledge Base

2

tag2 = [Barium = 42 % , Turla = 58%]

E1

E3

E5

E6

E7

E8

E6

E8

E3

E5
E1

E7

Cluster Inspection cOceanLotus = 2
cDarkHydrus = 2

cBarium = 1

cMalware = 1

Scrutinizer. Omid Mirzaei

Detecting Code Reuse

 31

4
tag4 = [Barium = 43 % , Malware = 57%]

1
tag1 = [OceanLotus = 66 % , DarkHydrus = 34%]

tag3 = [Benign = 63 % , Turla = 37%]

3

Knowledge Base

2

tag2 = [Barium = 42 % , Turla = 58%]

E1

E3

E5

E6

E7

E8

E6

E8

E3

E5
E1

E7

Cluster Inspection cOceanLotus = 2
cDarkHydrus = 2

cBarium = 2

cMalware = 2

Scrutinizer. Omid Mirzaei

Detecting Code Reuse

 32

4
tag4 = [Barium = 43 % , Malware = 57%]

1
tag1 = [OceanLotus = 66 % , DarkHydrus = 34%]

tag3 = [Benign = 63 % , Turla = 37%]

3

Knowledge Base

2

tag2 = [Barium = 42 % , Turla = 58%]

E1

E3

E5

E6

E7

E8

E6

E8

E3

E5
E1

E7

Cluster Inspection cOceanLotus = 2
cDarkHydrus = 2

cBarium = 3

cMalware = 3

Scrutinizer. Omid Mirzaei

Detecting Code Reuse

 33

4
tag4 = [Barium = 43 % , Malware = 57%]

1
tag1 = [OceanLotus = 66 % , DarkHydrus = 34%]

tag3 = [Benign = 63 % , Turla = 37%]

3

Knowledge Base

2

tag2 = [Barium = 42 % , Turla = 58%]

E1

E3

E5

E6

E7

E8

E6

E8

E3

E5
E1

E7

Cluster Inspection cOceanLotus = 2
cDarkHydrus = 2

cBarium = 4

cMalware = 4

Scrutinizer. Omid Mirzaei

Detecting Code Reuse

 34

4
tag4 = [Barium = 43 % , Malware = 57%]

1
tag1 = [OceanLotus = 66 % , DarkHydrus = 34%]

tag3 = [Benign = 63 % , Turla = 37%]

3

Knowledge Base

2

tag2 = [Barium = 42 % , Turla = 58%]

E1

E3

E5

E6

E7

E8

E6

E8

E3

E5
E1

E7

Cluster Inspection Report (x/6) OceanLotus = 33 %

DarkHydrus = 33 %

Barium = 17 %

Malware = 17 %

cOceanLotus = 2
cDarkHydrus = 2

cBarium = 4

cMalware = 4

Scrutinizer. Omid Mirzaei

Outline

• Scrutinizer Overview
• Results
• Discussion
• Conclusion

 35

Scrutinizer. Omid Mirzaei

Results
Datasets

 36

Scrutinizer. Omid Mirzaei

Results
Function Encoding

• Automatic Verification
– Cross-validation

• Manual Verification
– 1000 samples

 37

Prediction error statistics after 5-fold cross-validation

Scrutinizer. Omid Mirzaei

Results
Cluster Analysis

• We leveraged HDBSCAN algorithm to group function
embeddings into different clusters

• We reduced the dimension of function embedding from 128 to 8
using PCA to speed up the clustering process

• We could find 1+ million clusters with similar function
encodings
– 91% of clusters were completely benign
– 3.2% of clusters were completely malicious
– 5.88% of clusters were mixed

• The average size of clusters was around 5
• The largest cluster had 14K+ function embeddings

 38

Scrutinizer. Omid Mirzaei

Results
Real-World Deployment - Filtering

• The filtering mechanism works well in practice by filtering a
median of 126 functions (56% of code).

 39

≈

Scrutinizer. Omid Mirzaei

Results
Real-World Deployment - Filtering

• The applied filtering mechanism improves the TPR of a
classification system by 10% and decreases the FPR by 8.8%

 40

Scrutinizer. Omid Mirzaei

Results
Real-World Deployment - Code Reuse Analysis on APT Campaigns

• Intra-campaign code reuse analysis
• Inter-campaign code reuse analysis

 41

Campaign analysis result for a subset of samples that we could manually verify using online threat reports and AV scanners.

Scrutinizer. Omid Mirzaei

Outline

• Scrutinizer Overview
• Results
• Discussion
• Conclusion

 42

Scrutinizer. Omid Mirzaei

Discussion

• Accuracy
– Function encoding relies on training data
– Collecting data is a non-trivial task

• Decompilation is an error-prone process
• Features extraction tools cannot handle decompiled codes well due

to artifacts

• Analysis costs and potential bottlenecks
– Dynamic analysis
– Training and clustering processes

 43

Scrutinizer. Omid Mirzaei

Outline

• Scrutinizer Overview
• Results
• Discussion
• Conclusion

 44

Scrutinizer. Omid Mirzaei

Conclusion

• Targeted attacks are growing in number
• Lack of automated tools to inspect code reuse in malware

samples that are used in targeted attacks
• We have proposed an automated tool to fill this gap with the

following features:
– An ML-based function encoding mechanism
– A filtering mechanism to discard functions that are prevalent in

both malware and benign samples and to save analysis time
– An automatic code reuse detection and campaign assignment tool

 45

